Cloning of rat prolactin receptor (PRLR) cDNAs revealed the existence of two isoforms, termed short and long according to the length of their cytoplasmic domain. Internalization studies show, first, that PRLR internalization is hormone-dependent and, second, that ligand-receptor complexes of the short PRLR are internalized to a larger extent compared to the long form. In order to identify regions within the cytoplasmic domain of the short PRLR required for efficient internalization, serial truncations of the cytoplasmic tail were performed by inserting a stop codon in place of those encoding residues 282, 273, 262, 253, 244, or 237 (wild type short PRLR contains 291 amino acids). Our data show that two motifs, lying within residues 253-261 and 273-281, are involved in internalization. Both regions contain a consensus feature identified within other receptors as internalization signals, namely a di-leucine peptide (amino acids 259-260) and a tetrapeptide predicted to adopt a beta-turn structure (amino acids 276-279). We propose these two motifs are involved in PRLR endocytosis. Finally, we show that alpha-adaptin, a component of adaptor protein AP-2, coprecipitates with short PRLR complexes upon PRL stimulation, which strongly suggests that PRLR internalization is mediated by the clathrin-coated pits endocytotic pathway.