Expression of the calcium-dependent adhesion molecule E-cadherin suppresses the invasion of cells in vitro, but the mechanism of this effect is unknown. To investigate this mechanism, we analyzed the effects of expressing E-cadherin in mouse L-cells and rat astrocyte-like WC5 cells. Increased cellular adhesion mediated by E-cadherin reduced invasion in WC5 cells and in some L-cells, but not in others. In all cases, suppression of invasion was correlated with decreased cell movement as assessed in an in vitro wound-filling assay and a transwell motility assay. To define the relationship between adhesion mediated by E-cadherin and suppression of motility, we analyzed the effects of deleting different regions of the E-cadherin cytoplasmic domain. E-cadherin lacking the entire cytoplasmic domain did not mediate calcium-dependent adhesion and did not reduce cell motility when expressed in WC5 cells. E-cadherin lacking a portion of the catenin-binding domain did not associate with the cytoskeleton and did not promote adhesion, yet still suppressed the motility of WC5 cells. In addition, E-cadherin that retains an intact catenin-binding domain, but lacks a juxtamembrane portion of the cytoplasmic domain, mediated effective adhesion, but did not suppress motility. These results indicate E-cadherin mediates adhesion and suppresses cell motility via distinct of E-cadherin plays a key role in suppressing motility.