Upregulation of c-Fos in activated T lymphoid and monocytic cells by human immunodeficiency virus-1 Tat protein

Blood. 1997 Mar 1;89(5):1654-64.

Abstract

The regulatory Tat protein of the human immunodeficiency virus type-1 (HIV-1) is essential for viral replication and also shows pleiotropic activities on various cell functions. To get further insights into the molecular mechanisms underlying the biological activity of Tat, we investigated the effect of endogenous and exogenous Tat protein on c-fos gene expression in T lymphoblastoid (Jurkat) and monocytic (U937) cell lines, as well as in primary peripheral blood mononuclear cells (PBMC). Transient cotransfection of tat cDNA in sense orientation (tat/S), together with a plasmid containing the c-fos promoter (FC3, from -711 to +42) in front of the bacterial chloramphenicol acetyltransferase (CAT) gene significantly enhanced CAT activity in Jurkat cells activated by the addition of 15% fetal calf serum (FCS) or 5 micrograms/mL phytohemagglutinin plus 10(-7) mol/L phorbol myristate acetate (PMA) and U937 cells activated by 15% FCS or 10(-7) mol/L PMA. This effect was specifically due to Tat, since Jurkat and U937 cells cotransfected either with tat cDNA in antisense orientation (tat/AS), tat carrying a mutation in the aminoacid cys22-gly22 (tat 22/S) or with the backbone vector alone (pRPneo-SL3) did not show any significant difference in c-fos promoter activity as compared to cells transfected with FC3 plasmid alone. By using deletion mutants of the c-fos promoter, we found that the minimal DNA sequence required for Tat activity was located between nucleotides -404/-220 and that the serum responsive element (SRE, -317/-288), present within this region, was still responsive to Tat. A single point mutation in the SRE completely abrogated the responsiveness to tat/S. Exogenous recombinant Tat protein was also able to upregulate c-fos promoter activity in serum-activated Jurkat and U937 cells, as well as endogenous c-fos mRNA expression and c-Fos protein synthesis in both serum-activated cell lines and primary PBMC. c-Fos protein was shown essential for an optimal transactivation of the HIV-1 long terminal repeat (LTR) by Tat: incubation of Jurkat cells with antisense, but not sense, c-fos oligonucleotides significantly reduced either the Tat-enhanced expression of an LTR-CAT reporter construct or the levels of gag p24 in the culture supernatants of Jurkat cells and PBMC acutely infected with HIV-1. Our data suggest that the c-fos upregulation mediated by Tat might play a significant role in the control of viral gene transactivation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Regulation, Neoplastic / drug effects
  • Gene Expression Regulation, Viral*
  • Gene Products, tat / genetics*
  • Gene Products, tat / pharmacology
  • Genes, fos*
  • HIV Infections* / genetics
  • HIV-1*
  • Humans
  • Monocytes / metabolism
  • Monocytes / virology*
  • Proto-Oncogene Proteins c-fos / genetics*
  • T-Lymphocytes / metabolism
  • T-Lymphocytes / virology*
  • Tumor Cells, Cultured
  • tat Gene Products, Human Immunodeficiency Virus

Substances

  • Gene Products, tat
  • Proto-Oncogene Proteins c-fos
  • tat Gene Products, Human Immunodeficiency Virus