Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system that can be induced by immunization with myelin basic protein (MBP)/complete Freund's adjuvant and serves as a model for multiple sclerosis. Recent studies have suggested that cytokines play a crucial role in the clinical course of EAE. To clarify the roles of cytokines in EAE, we examined levels of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta1 (TGF-beta1) and interleukin-10 (IL-10) mRNA in isolates from infiltrating inflammatory cells in EAE lesions induced in Lewis rats. The non-radioactive and sensitive competitive PCR method was employed to quantify the relative amounts of cytokine mRNA. Levels of both IFN-gamma and TNF-alpha mRNA were increased at the early stage of EAE and rapidly decreased at the peak stage. On the other hand, TGF-beta1 mRNA was demonstrated throughout the course of EAE as well as under normal conditions and its amount paralleled the severity of EAE. IL-10 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR) under normal conditions, but was below the level of detection of competitive PCR. IL-10 mRNA expression peaked at the early stage of EAE and declined gradually thereafter. Taken together, these results suggest that IFN-gamma and TNF-alpha might play a crucial role in the development of EAE. Furthermore, it appears that the peak expression of IL-10 mRNA at the early stage and the following marked TGF-beta1 expression at the peak stage might represent an important endogenous mechanism to limit the extent of inflammation and to prevent relapse in the course of acute monophasic EAE.