The DNA sequence of a single-stranded and double-stranded template was determined. The templates were sequenced using the chain termination method and cycle sequencing method and detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The sequencing products were analyzed successfully without the laborious and expensive methods for removal of the template. Direct sequencing of the double-stranded template was achieved with minimal post-reaction purifications, which could be extremely important for mutation analysis and clinical diagnosis. A systematic study of the mechanisms and kinetics of sequencing reactions was also performed. The details of this analysis and directions for future improvements of the quality of sequencing are presented.