Role of cytochromes P450 in the metabolism of methyl tert-butyl ether in human livers

Arch Toxicol. 1997;71(4):266-9. doi: 10.1007/s002040050386.

Abstract

Methyl tert-butyl ether (MTBE) is widely used as a gasoline oxygenate for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health is a major public concern. However, information on the metabolism of MTBE in human tissues is lacking. The present study demonstrates that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and a marker for exposure to MTBE. The activity is localized in the microsomal fraction (125 +/- 11 pmol TBA/ min per mg protein, n = 8) but not in the cytosol. This activity level in human liver microsomes is approximately one-half of the value in rat and mouse liver microsomes. Formation of TBA in human liver microsomes is NADPH-dependent, and is significantly inhibited by carbon monoxide (CO), an inhibitor of cytochrome P450 (CYP) enzymes, suggesting that CYP enzymes play a critical role in the metabolism of MTBE in human livers. Both CYP2A6 and 2E1 are known to be constitutively expressed in human livers. To examine their involvement in MTBE metabolism, human CYP2A6 and 2E1 cDNAs were individually co-expressed with human cytochrome P450 reductase by a baculovirus expression system and the expressed enzymes were used for MTBE metabolism. The turnover number for CYP2A6 and 2E1 was 6.1 and 0.7 nmol TBA/min per nmol P450, respectively. The heterologously expressed human CYP2A6 was also more active than 2E1 in the metabolism of two other gasoline ethers, ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). Although the contributions of other human CYP forms to MTBE metabolism remain to be determined, these results strongly suggest that CYP enzymes play an important role in the metabolism of MTBE in human livers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Butanols / metabolism
  • Cytochrome P-450 CYP2A6
  • Cytochrome P-450 CYP2E1 / metabolism*
  • Cytochrome P-450 Enzyme System / metabolism*
  • Female
  • Humans
  • Male
  • Methyl Ethers / metabolism*
  • Mice
  • Microsomes, Liver / metabolism*
  • Middle Aged
  • Mixed Function Oxygenases / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Solvents / metabolism*
  • tert-Butyl Alcohol

Substances

  • Butanols
  • Methyl Ethers
  • Solvents
  • methyl tert-butyl ether
  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Cytochrome P-450 CYP2E1
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6
  • tert-Butyl Alcohol