Coexpression of cytochrome P4502A6 and human NADPH-P450 oxidoreductase in the baculovirus system

Drug Metab Dispos. 1997 Apr;25(4):399-405.

Abstract

Heterologous expression using baculovirus vectors has become a popular method for the production of catalytically active cytochrome P450s (CYPs). We have systematically optimized the multiplicity of infection (MOI) for a coinfection approach for the coexpression of CYP2A6 (viral vector designated v2A6) and NADPH-P450 oxidoreductase (OR; viral vector designated vOR) using Sf9 insect cells. A 3000-fold range of MOI was examined in stationary culture and stirred suspension culture. Surprisingly, our results indicate that the best CYP2A6 catalytic activity (850-1300 pmol/ min/mg total lysate protein as measured by coumarin 7-hydroxylase activity) was obtained only when using a low MOI of v2A6 (1.5-3 x 10(-2)) and a vOR of 10- to 20-fold less. This activity was approximately 7- to 11-fold higher than the best activity obtained when infecting cells with v2A6 alone. At this level of coinfection, the P450 content ranged from 180 to 250 pmol/mg total lysate protein, and the NADPH cytochrome c reductase activity ranged from 350 to 520 nmol/min/mg total lysate protein. Increasing the MOI of both viruses to 50-fold higher resulted in lower overall activity with the optimum (250 pmol/min/mg total lysate protein) being seen earlier postinfection (60 vs. 72 hr). Increasing the MOI of vOR to levels comparable with those of v2A6, decreased coumarin 7-hydroxylase activity 14-fold. These results suggest that the best CYP2A6 catalytic activity depends on properly posttranslationally modified proteins accumulating in a right ratio as a result of primary, secondary, and possibly tertiary infection of both viruses. These results also suggest that high OR expression results in degradation of P450.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Baculoviridae / genetics*
  • Catalysis
  • Cell Line
  • Cloning, Molecular
  • Cytochrome P-450 CYP2A6
  • Cytochrome P-450 Enzyme System / genetics*
  • Cytochrome P-450 Enzyme System / metabolism
  • Humans
  • Mixed Function Oxygenases / genetics*
  • Mixed Function Oxygenases / metabolism
  • NADPH-Ferrihemoprotein Reductase / genetics*
  • Spodoptera

Substances

  • Cytochrome P-450 Enzyme System
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2A6 protein, human
  • Cytochrome P-450 CYP2A6
  • NADPH-Ferrihemoprotein Reductase