Raf-1 is a major downstream effector of mammalian Ras. Binding of the effector domain of Ras to the Ras-binding domain of Raf-1 is essential for Ras-dependent Raf-1 activation. However, Rap1A, which has an identical effector domain to that of Ras, cannot activate Raf-1 and even antagonizes several Ras functions in vivo. Recently, we identified the cysteine-rich region (CRR) of Raf-1 as another Ras-binding domain. Ha-Ras proteins carrying mutations N26G and V45E, which failed to bind to CRR, also failed to activate Raf-1. Since these mutations replace Ras residues with those of Rap1A, we examined if Rap1A lacks the ability to bind to CRR. Contrary to the expectation, Rap1A exhibited a greatly enhanced binding to CRR compared with Ha-Ras. Enhanced CRR binding was also found with Ha-Ras carrying another Rap1A-type mutation E31K. Both Rap1A and Ha-Ras(E31K) mutant failed to activate Raf-1 and interfered with Ha-Ras-dependent activation of Raf-1 in Sf9 cells. Enhanced binding of Rap1A to CRR led to co-association of Rap1A and Ha-Ras with Raf-1 N-terminal region through binding to CRR and Ras-binding domain, respectively. These results suggest that Rap1A interferes with Ras-dependent Raf-1 activation by inhibiting binding of Ras to Raf-1 CRR.