A series of 12 chiral arylcarboxylic acids were chromatographed on an immobilized human serum albumin chiral stationary phase (HSA-CSP). The effects of solute structure on chromatographic retentions and enantioselective separations were examined by linear regression analysis and the construction of quantitative structure-enantioselective retention relationships. Competitive displacement studies were also conducted using R-ibuprofen as the displacing agent. The results indicate that the enantioselective retention of the solutes takes place at the indole-benzodiazepine site (site II) on the HSA molecule and that chiral recognition is affected by the hydrophobicity and steric volume of the solutes. The displacement studies also identified a cooperative allosteric interaction induced by the binding of R-ibuprofen to site II.