Introduction: Comparisons of Quincke needles and non traumatic "pencil point" needles in recent years have reported lower rates of post dural puncture headache using the later type. Our new understanding of the morphology of the human dura mater motivated us to study dural lesions caused by the Whitacre 25 G and Quincke 26 G needles, using scanning electron microscopy with the aim of determining whether there is an anatomic basis for the different outcomes.
Method: The dura mater from three fresh cadavers of individuals aged 65, 70 and 72 years were punctured 40 times at an angle of 90 degrees each time. The Whitacre 25 G needle was used for 20 punctures and the Quincke 26 G needle was used for the other 20. Half the punctures were performed with the bevel in the parallel alignment and the other half with the bevel perpendicular to the spinal column. Fifteen min after causing the punctures, specimens were fixed in solutions of glutaraldehyde phosphate buffer and dehydrated in acetone. After critical point removal of the acetone, after the specimens were treated with carbon and metallized with gold. The lesions were examined externally and internally and expressed as the ratio of area of lesion to diameter of the needle that had caused them.
Results: Whitacre needle: each lesion consisted in the superimposition of multiple damaged layers that started to close individually. After 15 min the outermost layers were 90% closed and the innermost ones had closed entirely. Layers in the arachnoid surface of the dura mater had closed from 86 to 88%, while deeper layers in the thick part had closed 97 to 98%. Quincke needle: lesions were V-shaped or half-moon shaped, much like the opening formed by a can opener, on both the external and internal surfaces. Alignment of the bevel of the needle parallel to the spinal column did not lead to a different shape of puncture. After 15 min the lesions had closed 94 to 95% on the epidural surface and 95 to 96% on the arachnoid side, a difference attributable to the retraction of the arachnoid layers over the spinal column.
Conclusion: Non traumatic beveled dural needles, termed "pencil point needles", only partially separate dural fibers, and lesions caused by these needles develop in a more complex way. The Quincke 26G needle produced a puncture that is morphologically different from that caused by the Whitacre 25G needle, although lesions produced by both types close more than 94% after 15 min. We believe the size of the lesion caused by these needles does not explain the difference in post dural puncture headache due to loss of spinal fluid.