A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature

J Clin Invest. 1997 Jun 1;99(11):2782-90. doi: 10.1172/JCI119468.

Abstract

A two-step paradigm for leukocyte recruitment has been established in a number of tissues including the mesentery, skin, and muscle, and necessitates an initial rolling step via the selectins before firm leukocyte adhesion via the integrins. In view of the many inflammatory diseases that involve the liver, we investigated the importance of rolling and the selectins in the hepatic microvasculature and compared the responses to that of the commonly used mesentery or cremaster microvasculature. We visualized the liver microvasculature using intravital microscopy and we determined that within the liver the majority of leukocytes adhere within the sinusoids (80%) in response to a chemotactic stimulus such as FMLP (20% in postsinusoidal venules) whereas leukocytes adhere exclusively within postcapillary venules in tissue like the mouse cremaster. In the sinusoids, the adhesive response to FMLP is not dependent upon selectins inasmuch as adhesion was not reduced in the sinusoidal vessels of P-selectin-deficient mice or E-selectin/P-selectin- deficient animals in the presence or absence of L-selectin antibody. No rolling or adhesion was detected in response to FMLP in the selectin-deficient cremaster microvasculature. Immunoneutralization of selectins with fucoidan in wildtype mice eliminated rolling and adhesion in the cremaster but failed to affect adhesion in the liver sinusoids in response to FMLP. More long-term leukocyte recruitment with lipopolysaccharide (4 h) was also impaired in the cremaster but not the liver microvasculature in selectin-deficient animals. Leukocyte adhesion in the sinusoids was reduced in P-selectin-deficient mice also lacking intercellular adhesion molecule-1 (ICAM-1). This study for the first time demonstrates that selectins are not an essential step for leukocyte recruitment into the inflamed liver microvasculature.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Adhesion
  • Enterohepatic Circulation
  • Inflammation / pathology
  • Inflammation / physiopathology*
  • Leukocytes / pathology*
  • Liver / blood supply*
  • Liver / pathology
  • Male
  • Mice
  • Rats
  • Rats, Sprague-Dawley
  • Selectins / physiology*

Substances

  • Selectins