Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors

J Neurosci. 1997 Jun 15;17(12):4536-44. doi: 10.1523/JNEUROSCI.17-12-04536.1997.

Abstract

Dopamine D2 receptors (D2Rs) are of crucial importance in the striatal processing of motor information received from the cortex. Disruption of the D2R gene function in mice results in a severe locomotor impairment. This phenotype has analogies with Parkinson's disease symptoms. D2R-null mice were used to investigate the role of this receptor in the generation of striatal synaptic plasticity. Tetanic stimulation of corticostriatal fibers produced long-term depression (LTD) of EPSPs in slices from wild-type (WT) mice. Strikingly, recordings from D2R-null mice showed the converse: long-term potentiation (LTP). This LTP, unlike LTD, was blocked by an NMDA receptor antagonist. In magnesium-free medium, LTP was also revealed in WT mice and found to be enhanced by L-sulpiride, a D2R antagonist, whereas it was reversed into LTD by LY 17555, a D2R agonist. In D2R-null mice this modulation was lost. Thus, our study indicates that D2Rs play a key role in mechanisms underlying the direction of long-term changes in synaptic efficacy in the striatum. It also shows that an imbalance between D2R and NMDA receptor activity induces altered synaptic plasticity at corticostriatal synapses. This abnormal synaptic plasticity might cause the movement disorders observed in Parkinson's disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 2-Amino-5-phosphonovalerate / pharmacology
  • 6-Cyano-7-nitroquinoxaline-2,3-dione / pharmacology
  • Animals
  • Cerebral Cortex / physiology
  • Corpus Striatum / physiology*
  • Crosses, Genetic
  • Dopamine Agonists / pharmacology
  • Electric Stimulation
  • Evoked Potentials / drug effects
  • Heterozygote
  • Hippocampus / physiology
  • In Vitro Techniques
  • Long-Term Potentiation
  • Magnesium / pharmacology
  • Mice
  • Mice, Knockout
  • Motor Activity
  • Nerve Fibers / physiology
  • Neuronal Plasticity / genetics
  • Neuronal Plasticity / physiology*
  • Neurons / physiology*
  • Parkinson Disease, Secondary / genetics
  • Parkinson Disease, Secondary / physiopathology
  • Phenotype
  • Receptors, Dopamine D2 / deficiency*
  • Receptors, Dopamine D2 / genetics
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Sulpiride / pharmacology
  • Synapses / drug effects
  • Synapses / physiology*

Substances

  • Dopamine Agonists
  • Receptors, Dopamine D2
  • Receptors, N-Methyl-D-Aspartate
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • 2-Amino-5-phosphonovalerate
  • Sulpiride
  • Magnesium