Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling

Biochem J. 1997 Apr 1;323 ( Pt 1)(Pt 1):1-12. doi: 10.1042/bj3230001.

Abstract

The intracellular concentration of free unbound acyl-CoA esters is tightly controlled by feedback inhibition of the acyl-CoA synthetase and is buffered by specific acyl-CoA binding proteins. Excessive increases in the concentration are expected to be prevented by conversion into acylcarnitines or by hydrolysis by acyl-CoA hydrolases. Under normal physiological conditions the free cytosolic concentration of acyl-CoA esters will be in the low nanomolar range, and it is unlikely to exceed 200 nM under the most extreme conditions. The fact that acetyl-CoA carboxylase is active during fatty acid synthesis (Ki for acyl-CoA is 5 nM) indicates strongly that the free cytosolic acyl-CoA concentration is below 5 nM under these conditions. Only a limited number of the reported experiments on the effects of acyl-CoA on cellular functions and enzymes have been carried out at low physiological concentrations in the presence of the appropriate acyl-CoA-buffering binding proteins. Re-evaluation of many of the reported effects is therefore urgently required. However, the observations that the ryanodine-senstitive Ca2+-release channel is regulated by long-chain acyl-CoA esters in the presence of a molar excess of acyl-CoA binding protein and that acetyl-CoA carboxylase, the AMP kinase kinase and the Escherichia coli transcription factor FadR are affected by low nanomolar concentrations of acyl-CoA indicate that long-chain acyl-CoA esters can act as regulatory molecules in vivo. This view is further supported by the observation that fatty acids do not repress expression of acetyl-CoA carboxylase or Delta9-desaturase in yeast deficient in acyl-CoA synthetase.

Publication types

  • Review

MeSH terms

  • Acyl Coenzyme A / physiology*
  • Amino Acid Sequence
  • Animals
  • Carrier Proteins / physiology
  • Cell Communication / physiology*
  • Coenzyme A Ligases / metabolism
  • Diazepam Binding Inhibitor
  • Energy Metabolism
  • Fatty Acid-Binding Protein 7
  • Fatty Acid-Binding Proteins
  • Fatty Acids / physiology
  • Humans
  • Lipids / biosynthesis
  • Models, Biological
  • Molecular Sequence Data
  • Myelin P2 Protein / physiology
  • Neoplasm Proteins*
  • Protein Kinase C / metabolism
  • Signal Transduction*
  • Tumor Suppressor Proteins*

Substances

  • Acyl Coenzyme A
  • Carrier Proteins
  • Diazepam Binding Inhibitor
  • FABP7 protein, human
  • Fatty Acid-Binding Protein 7
  • Fatty Acid-Binding Proteins
  • Fatty Acids
  • Lipids
  • Myelin P2 Protein
  • Neoplasm Proteins
  • Tumor Suppressor Proteins
  • Protein Kinase C
  • Coenzyme A Ligases