Patterns of metabolic adaptation are described in the neonate, which generate two fundamental concepts. First, that early nutritional experiences may have long-term effects on the control of metabolic homeostasis, and second, that insulin has a fundamental role in this process. The endocrine pancreas in the neonate is unable to regulate insulin secretion in relation to blood glucose concentration with the same level of tight control seen in the older child and adult. Moreover, the pattern of metabolic adaptation in the fullterm infant in the first postnatal week is different to that of the preterm baby and the infant born small-for-gestational-age (SGA), with both preterm and SGA infants being unable to generate counter-regulatory ketogenesis as blood glucose concentrations fall. The inability to initiate ketogenesis and switch off insulin secretion after birth persists for several weeks in preterm infants. Methods of feeding term and preterm infants have profound effects on the neonatal endocrine milieu and it is suggested that patterns of insulin secretion provoked in the newborn period may 'programme' the subsequent development of metabolic control. The recently described molecular mechanisms that underlie the pathogenesis of abnormal insulin secretion in the syndrome of persistent hyperinsulinaemic hypoglycemia of infancy (or pancreatic nesidioblastosis) may offer insights into how such programming may occur.