Black children deficient in galactose 1-phosphate uridyltransferase: correlation of activity and immunoreactive protein in erythrocytes and leukocytes

J Pediatr. 1997 Jun;130(6):972-80. doi: 10.1016/s0022-3476(97)70286-5.

Abstract

A recent study found a high prevalence of a missense mutation (S135L) in the gene for galactose 1-phosphate uridyltransferase (GALT) in black children with galactosemia (J Pediatr 1996; 128:89-95). In the present study, GALT activity and GALT protein content were measured in erythrocytes and leukocytes of eight black and seven white galactosemic (GALT-deficient) children, for correlation with the presence of the S135L and Q188R (highly prevalent in white galactosemic children) missense mutations. The S135L mutation was found in 9 of 16 alleles of black children but not in white children; the Q188R mutation was found in 10 of 14 alleles examined in white galactosemic children and in 4 of 16 alleles in black galactosemic children. The GALT activity was near zero in the erythrocytes of white and black galactosemic children (0.26 +/- 0.28 vs 0.33 +/- 0.25 mumol/hr per gram of hemoglobin, respectively; p = 0.61) (normal 17 to 26 mumol/hr per gram), and no correlation of erythrocyte activity with genotype was observed. The GALT activity was higher in the leukocytes of black galactosemic children compared with white children (5 +/- 6 vs 1 +/- 2 mumol/hr per gram, respectively) (normal 172 to 374 mumol/hr per gram), but the difference was not statistically significant (p = 0.11). Analysis by genotype revealed that the two S135L homozygotes had much more leukocyte activity (9 and 17 mumol/hr per gram) than Q188R homozygotes or than all non-S135L allelic genotypes. Compound heterozygotes (S135L/G) had intermediate activity. The GALT protein was not detectable by Western blot in the erythrocytes of either white or black galactosemic children, as determined by antibodies specific for both C- and N-terminal sequences. The GALT protein was undetectable in the leukocytes of white galactosemic children, but leukocytes from black galactosemic children with the S135L mutation contained reduced but readily detectable GALT protein. Erythrocyte galactose 1-phosphate levels were significantly lower in galactosemic children with an S135L mutant allele (1.1 +/- 0.2 gm/dl) compared with children who had other mutations (3.1 +/- 0.9 mg/dl; p = 0.0001). The correlation of protein content data with activity levels in the blood cells suggests that the S135L missense mutation affects the stability of GALT protein to produce a deficiency state.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Alleles
  • Black People / genetics*
  • Blotting, Western
  • Cataract / diagnosis
  • Child
  • Child, Preschool
  • Erythrocytes / chemistry*
  • Genotype
  • Homozygote
  • Humans
  • Leukocytes / chemistry*
  • Motor Activity*
  • Phenotype
  • Point Mutation
  • Speech Disorders / diagnosis
  • UTP-Hexose-1-Phosphate Uridylyltransferase / deficiency*
  • UTP-Hexose-1-Phosphate Uridylyltransferase / genetics
  • White People / genetics

Substances

  • UTP-Hexose-1-Phosphate Uridylyltransferase