A conformational study of the human and rat encephalitogenic myelin oligodendrocyte glycoprotein peptides 35-55

Eur J Biochem. 1997 May 15;246(1):59-70. doi: 10.1111/j.1432-1033.1997.t01-2-00059.x.

Abstract

Myelin oligodendrocyte glycoprotein (MOG), is considered an important central-nervous system-specific target autoantigen for primary demyelination in autoimmune diseases like multiple sclerosis. We have recently demonstrated that MOG or its derived peptide, MOG-(35-55)-peptide, are able to produce in animals, clinicopathologic signs that mimic multiple sclerosis. The rat MOG sequence spanning amino acids 35-55 [rMOG-(35-55)-peptide] differs from the human sequence [hMOG-(35-55)-peptide] by a single amino acid substitution, i.e. Pro42-->Ser. Mice injected with rMOG-(35-55)-peptide showed severe inflammation and demyelination throughout the central nervous system but, interestingly, mice injected with hMOG-(35 -55)-peptide showed only a few foci of mild inflammation with no demyelination. Circular dichroism and nuclear magnetic resonance spectroscopy have been used to structurally characterise the bioactive peptides hMOG-(35-55)-peptide and rMOG-(35-55)-peptide. In 0.1 M K2HPO4/KOH, 90% H2O/D2O solutions, these derived peptides have been shown, by NMR spectroscopy, to adopt detectable levels of short-range structure in equilibrium with unfolded conformers. On addition of 2,2,2-trifluoro-(2H3)ethanol, rMOG-(35-55)-peptide and hMOG-(35-55)-peptide adopt folded structures which have nuclear Overhauser enhancements characteristic of a poorly defined alpha-helix over residues 44-51. There are some indications of secondary structure also evident in the N-terminal region of rMOG-(35-55)-peptide. CD spectroscopy has revealed that in aqueous solution both peptides are unfolded but in 2.2.2-trifluoroethanol and, at micellar concentrations of sodium dodecyl sulfate, rMOG-(35-55)-peptide and, to a lesser extent, hMOG-(35-55)-peptide adopt helical conformations. In contrast, at non-micellar concentrations of SDS rMOG-(35-55)-peptide and hMOG-(35-55)-peptide adopt, according to CD spectroscopy, a beta-structure indicating that the peptides change conformation depending on the microenvironment of the amino acids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Antigens, Surface / chemistry
  • Circular Dichroism
  • Encephalitis / chemically induced*
  • Female
  • Humans
  • Magnetic Resonance Spectroscopy
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NOD
  • Molecular Sequence Data
  • Myelin Proteins
  • Myelin-Associated Glycoprotein / chemistry*
  • Myelin-Associated Glycoprotein / pharmacology*
  • Myelin-Oligodendrocyte Glycoprotein
  • Oligodendroglia
  • Peptide Fragments / chemistry*
  • Peptide Fragments / pharmacology
  • Protein Conformation*
  • Protein Folding
  • Protein Structure, Secondary
  • Rats
  • Sodium Dodecyl Sulfate

Substances

  • Antigens, Surface
  • MOG protein, human
  • Mog protein, mouse
  • Mog protein, rat
  • Myelin Proteins
  • Myelin-Associated Glycoprotein
  • Myelin-Oligodendrocyte Glycoprotein
  • Peptide Fragments
  • Sodium Dodecyl Sulfate