Modulation of the components involved in mitogenic signaling cascades is critical to the regulation of cell growth. GTP-binding proteins and the stimulation of phosphatidylcholine (PC) hydrolysis have been shown to play major roles in these cascades. One of the enzymes involved in PC hydrolysis, a PC-specific phospholipase C (PC-PLC) has received relatively little attention. In this paper we examined the role of a particular heterotrimeric GTP-binding protein, Go, in the regulation of cell growth and PC-PLC-mediated hydrolysis of PC in IIC9 fibroblasts. The Go alpha-subunit was ablated in IIC9 cells by stable expression of antisense RNA. These stably transfected cells acquired a transformed phenotype as indicated by: (a) the formation of multiple foci in monolayer cultures, (b) the acquisition of anchorage-independent growth in soft agar; and (c) an increased level of thymidine incorporation in the absence of added mitogens. These data implicate Goalpha as a novel tumor suppressor. Interestingly, PC-PLC activity was constitutively active in the Goalpha-ablated cells as evidenced by the chronically elevated levels of diacylglycerol and phosphorylcholine in the absence of growth factors. In contrast, basal activities of PC-phospholipase D, phospholipase A2, or phosphoinositol-PLC were not affected. These data demonstrate, for the first time, a role for Go in regulating cell growth and provide definitive evidence for the existence of a PC-PLC in eukaryotic cells. The data further indicate that a subunit of Go, is involved in regulating this enzyme.