Directed intercellular interactions between distinct cell types underlie the basis for organogenesis during embryonic development. This paper focuses on the establishment of the final somatic muscle pattern in Drosophila, and on the possible cross-talk between the myotubes and the epidermal muscle attachment cells, occurring while both cell types undergo distinct developmental programs. Our findings suggest that the stripe gene is necessary and sufficient to initiate the developmental program of epidermal muscle attachment cells. In stripe mutant embryos, these cells do not differentiate correctly. Ectopic expression of Stripe in various epidermal cells transforms these cells into muscle-attachment cells expressing an array of epidermal muscle attachment cell-specific markers. Moreover, these ectopic epidermal muscle attachment cells are capable of attracting somatic myotubes from a limited distance, providing that the myotube has not yet been attached to or been influenced by a closer wild-type attachment cell. Analysis of the relationships between muscle binding and differentiation of the epidermal muscle attachment cell was performed in mutant embryos in which loss of muscles, or ectopic muscles were induced. This analysis indicated that, although the initial expression of epidermal muscle-attachment cell-specific genes including stripe and groovin is muscle independent, their continuous expression is maintained only in epidermal muscle attachment cells that are connected to muscles. These results suggest that the binding of a somatic muscle to an epidermal muscle attachment cell triggers a signal affecting gene expression in the attachment cell. Taken together, our results suggest the presence of a reciprocal signaling mechanism between the approaching muscles and the epidermal muscle attachment cells. First the epidermal muscle attachment cells signal the myotubes and induce myotube attraction and adhesion to their target cells. Following this binding, the muscle cells send a reciprocal signal to the epidermal muscle attachment cells inducing their terminal differentiation into tendon-like cells.