Background: Plant nonspecific lipid transfer proteins (ns-LTPs) are small basic proteins that facilitate lipid shuttling between membranes in vitro. The function of ns-LTPs in vivo is still unknown. It has been suggested, in relation to their lipid binding ability, that they may be involved in cutin formation. Alternatively, they may act in the plant defence system against pathogenic agents. Ace-AMP1 is an antimicrobial protein extracted from onion seed that shows sequence homology with ns-LTPs but that is unable to transfer lipids. We have recently determined the three-dimensional structure of wheat and maize ns-LTPs. In order to compare the structural features of Ace-AMP1 and ns-LTPs, we have used the comparative modelling software MODELLER to predict the structure of Ace-AMP1.
Results: The global fold of Ace-AMP1 is very similar to those of ns-LTPs, involving four helices and a C-terminal tail without secondary structure elements. The structure of maize and wheat ns-LTP is characterized by the existence of a tunnel-like hydrophobic cavity in which a lipid molecule can be inserted. In the Ace-AMP1 structure, this cavity is blocked by a number of bulky residues. Similarly, the electrostatic potential contours of ns-LTPs show some common features that were not observed in Ace-AMP1.
Conclusions: Although Ace-AMP1 displays a similar global fold to ns-LTPs, it does not present a hydrophobic cavity, which may explain why Ace-AMP1 cannot shuttle lipids between membranes in vitro. The large differences in the electrostatic properties of Ace-AMP1 and ns-LTPs suggest a different mode of interaction with membranes.