In Drosophila intracellular gradients establish the pattern of segmentation by controlling gene expression during a critical syncytial stage, prior to cellularization. To investigate whether a similar mechanism may be exploited by other insects, we examined the timing of cellularization with respect to blastoderm formation in an insect with extreme short-germ development, the African desert locust, Schistocerca gregaria. Using light and electron microscopic techniques, we show that the islands of cytoplasm surrounding cleavage nuclei are largely isolated from their neighbours, allowing cleavage to proceed asynchronously. Within a short time of their arrival at the surface and prior to blastoderm formation, nuclei become surrounded by complete cell membranes that block the free uptake of dye (10,000 kDa) from the yolk. Our results imply that the formation of the blastoderm disc involves the aggregation of cells at the posterior pole of the egg and not the migration of nuclei within a syncytial cytoplasm. These findings suggest that the primary cleavage syncytium does not play the same role in patterning the locust embryo as it does in Drosophila. However, we do identify a syncytial nuclear layer that underlies the forming blastoderm and remains in continuity with the yolk.