PHF-tau proteins are the major components of the paired helical filament (PHF) from Alzheimer's disease (AD) neurofibrillary lesions. They differ both qualitatively and quantitatively in their degree of phosphorylation when compared with native tau proteins. However, little is known about the extent and heterogeneity of phosphorylated sites or the isoform composition and the isoelectric variants of PHF-tau. Therefore, we have characterized PHF-tau proteins from cortical brain tissue homogenates of 13 AD patients using two-dimensional gel electrophoresis. Whatever the topographical origin of brain tissue homogenates, PHF-tau proteins shared the same two-dimensional gel electrophoresis profile made of a tau triplet of 55, 64, and 69 kDa. A 74-kDa hyperphosphorylated tau component was detected particularly in the youngest and most severely affected AD patients. This additional component of hyperphosphorylated tau was shown to correspond to the longest brain tau isoform. Furthermore, the isoelectric points of PHF-tau from older AD patients were significantly more basic, indicating a lower degree of phosphorylation. These results show that the severity of neurofibrillary degeneration of AD is modulated by age.