Increased polymerase fidelity of the 3TC-resistant variants of HIV-1 reverse transcriptase

Nucleic Acids Res. 1997 Aug 15;25(16):3212-7. doi: 10.1093/nar/25.16.3212.

Abstract

Human immunodeficiency virus type 1 (HIV-1) variants with resistance mutations in the reverse transcriptase (RT) gene appear during drug therapy with the nucleoside analogue 2',3'-dideoxy-3'-thiacytidine (3TC). These 3TC-resistant RT variants have a single point mutation that changes the 184Met residue into either Val or Ile. Both codon 184 variants are frequently observed in 3TC-treated patients and can also be selected in cell culture infections. We demonstrated previously that the 184Ile and 184Val RT enzymes exhibit a processivity defect in in vitro assays, with 184Ile being the least processive enzyme [Met(wt) >Val >Ile]. In this study, we measured the polymerase fidelity of the wild-type (184Met) and 3TC-resistant RT enzymes (184Ile and 184Val) on DNA and RNA templates. Both virion- extracted and Escherichia coli -expressed recombinant RT enzymes were used to measure the nucleotide misinsertion and mispair extension efficiencies. The 3TC-resistant enzymes were more accurate than the wild-type RT protein in both type of assays. The order of accuracy observed for the codon 184 variants [Ile >Val >Met(wt)] may suggest an inverse correlation between the fidelity and processivity properties of these enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / metabolism
  • Drug Resistance
  • HIV Reverse Transcriptase / antagonists & inhibitors
  • HIV Reverse Transcriptase / genetics
  • HIV Reverse Transcriptase / metabolism*
  • Lamivudine / pharmacology*
  • Point Mutation
  • RNA / metabolism
  • Recombinant Proteins
  • Structure-Activity Relationship
  • Substrate Specificity
  • Templates, Genetic

Substances

  • Recombinant Proteins
  • Lamivudine
  • RNA
  • DNA
  • HIV Reverse Transcriptase