Consistent fat suppression with compensated spectral-spatial pulses

Magn Reson Med. 1997 Aug;38(2):198-206. doi: 10.1002/mrm.1910380207.

Abstract

Reliable fat suppression is especially important with fast imaging techniques such as echo-planar (EPI), spiral, and fast spin-echo (FSE) T2-weighted imaging. Spectral-spatial excitation has a number of advantages over spectrally selective presaturation techniques, including better resilience to B0 and B1 inhomogeneity. In this paper, a FSE sequence using a spectral-spatial excitation pulse for superior fat suppression is presented. Previous problems maintaining the CPMG condition are solved using simple methods to accurately program radio-frequency (RF) phase. Next an analysis shows how B0 eddy currents can reduce fat suppression effectiveness for spectral-spatial pulses designed for conventional gradient systems. Three methods to compensate for the degradation are provided. Both the causes of the degradation and the compensation techniques apply equally to gradient-recalled applications using these pulses. These problems do not apply to pulses designed for high-speed gradient systems. The spectral-spatial FSE sequence delivers clinically lower fat signal with better uniformity than spectrally selective pre-saturation techniques.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adipose Tissue / anatomy & histology
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging