The relevance of MDR-1 gene expression to the multidrug resistance phenotype was investigated. Drug-resistant cells, KB-V1 and MCF7/ADR, constantly expressed mRNA of the MDR-1 gene and were more resistant to vinblastine and adriamycin than drug-sensitive cells, KB-3-1 and MCF7. The drug efflux rate of KB-V1 was the same as KB-3-1 although the MDR-1 gene was expressed in only the resistant cell. The higher intracellular drug concentration of KB-3-1 than KB-V1 was due to the large drug influx. In the case of MCF7 and MCF7/ADR, the influx and efflux of the drug had nearly the same pattern and drug efflux was not affected by verapamil. The amount of ATP, cofactor of drug pumping activity of P-glycoprotein, was not changed by the resistance. These observations suggested that drug efflux mediated by MDR-1 gene expression was not a major determining factor of drug resistance in the present cell systems, and that the drug resistance could be derived from the change in drug uptake and other mechanisms.