The blood vessels in the brains of adult rats subjected to chronic normobaric hypoxia and control animals housed under normoxic conditions were morphometrically studied. Hypoxic male inbred Wistar rats were exposed over a period of 130 days to decreasing amounts of oxygen starting from 21% down to 7% (15%: 15 days; 12%, 10%, 8%: 22 days, respectively; 7%: 49 days). Areas of cerebral cortex, striatum, hippocampus, cerebellum, and medulla oblongata were investigated. The ratio vessel number per mm2 tissue and the average vessel size were measured using a Quantimet Q570. In the hypoxic animals, cerebral cortex, striatum, and hippocampus showed a significant increase of the vessel density per mm2 tissue (P < 0.01 or P < 0.05). The differences in both groups were highest in the striatum and hippocampus. In the cerebellum and the medulla oblongata of hypoxic animals, only a tendency to higher vessel numbers per mm2 tissue was found. The average blood vessel size differed only in the cerebral cortex and the cerebellum, but not in the other brain regions tested. The results indicate that the adaptation of the brain circulation to hypoxia is achieved by both angiogenesis and dilatation of microvessels, and that the pattern of the microcirculatory changes is not homogenous in all regions.