Hypoxia induced the mRNA expression of vascular endothelial growth factor (VEGF) in porcine brain derived microvascular endothelial cells (BMEC) in a time-dependent manner. Corresponding to the mRNA induction the protein level of VEGF was elevated during hypoxia. The adenosine A1 receptor antagonist 8-phenyltheophylline (8-PT) reduced the hypoxia-induced VEGF mRNA and protein expression significantly. The treatment of BMEC with cobalt chloride-known to activate an oxygen sensing mechanism similar to the one used by the erythropoietin gene-also induced the VEGF mRNA expression, but 8-PT did not reduce this VEGF induction. Although, earlier studies revealed that agents like phorbolester induced the VEGF mRNA expression, the specific inhibitor of the proteinkinase C (PKC) bisindolylmaleimide (BIM) did not reduce but enhanced the hypoxia-induced VEGF mRNA expression. These results indicate that the VEGF induction in BMEC can proceed through PKC-dependent and -independent pathways (like those acting via the putative oxygen sensor). Hypoxia in BMEC probably activates the PKC-dependent pathway mainly via adenosine which might be formed during hypoxia and thereby inhibits activation of PKC-independent, oxygen sensing, pathways. This suggestion was supported by the fact that hypoxia as well as adenosine increased the VEGF mRNA expression post-transcriptionally by enhancing the stability of the VEGF mRNA [corrected].