The aim of the present study was to investigate whether nerve stimulation-induced nitric oxide (NO) release in the guinea-pig colon is affected by acetylcholine and to identify the muscarinic receptor subtype involved. Nerve-smooth muscle preparations were suspended in a superfusion chamber and NO/NO2- overflow in the superfusate was detected by chemiluminescence analysis. Transmural nerve stimulation evoked a significant increase in NO/NO2- release, which was inhibited by N(omega)-nitro-L-arginine methyl ester (L-NAME) and abolished by tetrodotoxin. Exogenous acetylcholine concentration-dependently increased NO/NO2- release and atropine reduced nerve stimulation-evoked NO/NO2- release. The muscarinic M1 receptor selective antagonist telenzepine (10(-8) M) was as effective as atropine (10(-6) M) in inhibiting NO/NO2- release. The muscarinic M3 receptor antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and para-fluoro-hexahydrosila-difenidol (p-F-HHSiD) markedly inhibited cholinergic contractions at 3 x 10(-8) M and 3 x 10(-7) M respectively, but did not affect NO/NO2- release. In conclusion, nerve-induced NO/NO2- release in the guinea-pig colon is to a substantial part due to muscarinic M1 receptor activation. Thus acetylcholine, a major contractile neurotransmitter in the gut, can release NO which could act as a negative feedback mechanism on intestinal smooth muscle or neuronal activity.