Recently, we studied a patient with minor abnormalities and an apparently acentric marker chromosome who carried a deleted chromosome 9 and a marker chromosome in addition to a normal chromosome 9. The marker was stable in mitosis but lacked a primary constriction. The origin of the marker was established by fluorescent in situ hybridization (FISH) using a chromosome 9 painting probe. Hybridization of unique sequence 9p probes localized the breakpoint proximal to 9p13. Additional FISH studies with all-human centromere alpha satellite, chromosome 9 classical satellite, and beta satellite probes showed no visible evidence of these sequences on the marker [Curtis et al.: Am J Hum Genet 57:A111, 1995]. Studies using centromere proteins (CENP-B, CENP-C, and CENP-E) were performed and demonstrated the presence of centromere proteins. These studies and the patient's clinical findings are reported here.