Amiodarone-induced thyrotoxicosis (AIT) occurs both in abnormal thyroid glands (nodular goiter, latent Graves' disease) (type I AIT) or in apparently normal thyroid glands (type II AIT). Differentiation of the two forms is crucial, because type I AIT responds well to methimazole and potassium perchlorate combined treatment, whereas type II AIT is effectively managed by glucocorticoids. Differential diagnosis is often difficult, although thyroid radioactive iodine uptake is usually low-to-normal in type I and low-suppressed in type II, and serum interleukin-6 levels are normal/slightly elevated in type I, markedly elevated in type II. Color flow Doppler sonography (CFDS) is a technique that shows intrathyroidal blood flow and provides real-time information on thyroid morphology and hyperfunction. To investigate the usefulness of CFDS in differentiating the two types of AIT, 27 consecutive AIT patients, 11 type I and 16 type II, were evaluated by CFDS before starting antithyroid treatment. Gender, age, severity of thyrotoxicosis, and cumulative amiodarone dose were similar in the two groups. All type II AIT patients had a CFDS pattern 0 (ie, absent vascularity), in agreement with the pathogenesis of the disease, due to thyroid damage. Likewise, nine patients with subacute thyroiditis, another destructive process of the thyroid gland, also had a CFDS pattern 0. Eleven patients with type I AIT had a CFDS pattern ranging from pattern I (presence of parenchymal blood flow with patchy uneven distribution) (7 patients, 64%) to pattern II (ie, mild increase of color flow Doppler signal with patchy distribution) (1 patient, 9%) and pattern III (markedly increased color flow Doppler signal with diffuse homogeneous distribution)(3 patients, 27%), similar to that found in patients with untreated Graves' disease patients, thus indicating a hyper-functioning gland. Control subjects and euthyroid patients under long-term amiodarone treatment had absent thyroid hypervascularity and a CFDS pattern 0. These findings demonstrate that CFDS distinguishes type I and II AIT. Because of its rapidity and noninvasive features, CFDS represents a valuable tool for a quick differentiation between the two types of AIT. This can avoid any delay in initiating the appropriate treatment for a rapid control of thyrotoxicosis in patients whose tachyarrhythmias or other cardiac disorders make thyroid hormone excess extremely deleterious.