The purpose of our study was test the hypothesis that endogenous angiotensin II contributes to the basal coronary artery tone by acting at vascular ATP-sensitive K+ (K+ATP) channels. Coronary blood flow (CBF) and other hemodynamic parameters were measured in anesthetized dogs. Intracoronary infusion of the selective antagonists of angiotensin II AT1 receptors (L-158,809 and E4177) increased CHF without affecting other hemodynamic parameters, indicating that endogenous angiotensin II caused coronary vaso-constriction through the AT1 subtype receptors. Coronary vasodilation in response to AT1 receptor antagonists was blunted by pretreatment with glibenclamide (a specific inhibitor of K+ATP channels; p < 0.01) but not by either an adenosine-receptor antagonist or an inhibitor of nitric oxide synthesis. Coronary vasodilation in response to AT1-receptor antagonists was partly reduced (p < 0.01) by PD-123319 (the AT2-receptor antagonist). Glibenclamide had no effect on coronary vasodilation induced by sodium nitroprusside. These results indicate that in dogs in vivo, coronary vasodilation in response to AT 1-receptor antagonists inhibited markedly by glibenclamide and partly by PD-123319, suggesting that endogenous angiotensin II contributes to the maintenance of basal coronary vascular tone by acting at K+ATP channels through its receptors.