Glucocorticoids regulate responsiveness of many cells to hormones that bind to G protein-coupled receptors. We examined the effect of glucocorticoids on parathyroid hormone (PTH) activation of two G protein-activated signal transduction pathways, phospholipase C (PLC) and adenylyl cyclase, in osteosarcoma UMR-106-01 cells. Dexamethasone (100 nM) increased PTH-stimulated and NaF-stimulated PLC activity by > 100% over 4 days (223 +/- 8 and 293 +/- 8.2% of control after 4 days for PTH and NaF-stimulated activity, respectively). The increase in PTH-stimulated adenylyl cyclase response in the same cells was more modest (162 +/- 5.4 and 171 +/- 6.8% of control after 4 days for PTH and NaF-stimulated activity, respectively). PTH activation of PLC was blocked by antiserums to G alpha q-11 and activation of adenylyl cyclase by G alpha s antiserums. Quantification of these G protein subunits in control and dexamethasone-treated cells showed a 78% increase in G alpha q-11 (from 18.1 +/- 1.2 to 32.2 +/- 1.5 pmol/mg), whereas G alpha s was increased only 34% (from 6.2 +/- 0.5 to 8.2 +/- 0.3 pmol/mg) and G beta-subunits were increased 40% (from 54 +/- 2.3 to 75.2 +/- 3.8 pmol/mg). These results suggest that glucocorticoids are more potent regulators of PLC activity than adenylyl cyclase activity in UMR cells, and this is mediated, at least in part, by differential increases in G alpha q-11 proteins.