To provide material suitable for structural studies of the nicotinic acetylcholine receptor, we have expressed and purified the NH2-terminal extracellular domain of the mouse muscle alpha subunit. Several constructs were initially investigated using Xenopus oocytes as a convenient small scale expression system. A fusion protein (alpha210GPI) consisting of the 210 NH2-terminal amino acids of the alpha subunit and a glycosylphosphatidylinositol anchorage sequence conferred surface alpha-bungarotoxin binding in oocytes. Coexpression of alpha210GPI with an analogous construct made from the delta subunit showed no evidence of heterodimer formation. The alpha210GPI protein was chosen for large scale expression in transfected Chinese hamster ovary cells. The alpha210GPI protein was cleaved from these cells and purified on an immunoaffinity column. Gel and column chromatography show that the purified protein is processed as expected and exists as a monomer. The purified protein also retains the two distinct, conformation-specific binding sites expected for the correctly folded alpha subunit. Circular dichroism studies of alpha210GPI suggest that this region of the receptor includes considerable beta-sheet secondary structure, with a small proportion of alpha-helix.