Epidermal growth factor (EGF) treatment of Rat-1 cells expressing human EGF receptor results in the modification of the tyrosine phosphorylation of the p130 Crk-associated substrate (Cas), a novel signaling molecule residing in focal adhesions. At low, mitogenic concentrations (<10 ng/ml), EGF treatment induced a rapid and transient tyrosine phosphorylation of Cas and promoted the formation of a Cas-adapter protein Crk complex in intact cells. The increase in tyrosine phosphorylation of Cas paralleled an increase in the cellular content of actin stress fibers and occurred via a pathway that depended on the integrity of the cytoskeleton. Further, phosphatidylinositol 3'-kinase activity was found to be required for the EGF-stimulated Cas phosphorylation and actin polymerization. At high concentrations (>30 ng/ml), EGF treatment resulted in the tyrosine dephosphorylation of Cas in a time-dependent manner with a concomitant decrease in the length and number of actin stress fibers. Thus, Cas exhibits an unusual bell-shaped dose-response curve in response to EGF stimulation. These results demonstrate a novel signaling role for EGF in inducing changes in tyrosine phosphorylation of Cas and Cas-Crk complex formation and suggest that Cas could be a signaling component in EGF-mediated signal transduction.