The ability of purified human macrophage colony-stimulating factor (M-CSF) to accelerate the formation of stromal cells from murine bone marrow cells was investigated. The liquid culture of the marrow cells with M-CSF resulted in the formation of monolayers of macrophages on day 7. When the M-CSF was removed on that day and the residual adherent cells were cultured in the absence of M-CSF for an additional 7 days, many colonies appeared with cells that were morphologically distinguishable from M-CSF-derived macrophages. The appearance of the colonies was dependent on the concentration of M-CSF used at the beginning of the culture. Each colony was isolated as a single clone and analyzed. All clones were negative for esterase staining. These cells did not express M-CSF receptor mRNA and did not show a mitogenic response to M-CSF. On the contrary, these cells could be stimulated to proliferate by fibroblast growth factor and platelet-derived growth factor. The polymerase chain reaction analysis of these cells demonstrated constitutive expression of mRNA for M-CSF, stem cell factor, and interleukin (IL)-1, but not IL-3. Some clones expressed mRNA for granulocyte/M-CSF and IL-6. We also examined the ability of the cells to maintain murine bone marrow high proliferative potential colony-forming cells (HPP-CFC) in a coculture system. Most of the clones showed a significant increase in total HPP-CFC numbers after 2 weeks of coculture, although the extent of stimulation differed among clones. These results suggested that the colonies established by M-CSF were composed of functional stromal cells that were phenotypically different from macrophages.