The chemokine receptors CCR-5 and CXCR-4, and possibly CCR-3, are the principal human immunodeficiency virus type 1 (HIV-1) coreceptors, apparently interacting with HIV-1 envelope, in association with CD4. Cell lines coexpressing CD4 and these chemokine receptors were infected with a panel of seven primary HIV-2 isolates passaged in peripheral blood mononuclear cells (PBMC) and three laboratory HIV-2 strains passaged in T-cell lines. The CCR-5, CCR-3, and CXCR-4 coreceptors could all be used by HIV-2. The ability to use CXCR-4 represents a major difference between HIV-2 and the closely related simian immunodeficiency viruses. Most HIV-2 strains using CCR-5 could also use CCR-3, sometimes with similar efficiencies. As observed for HIV-1, the usage of CCR-5 or CCR-3 was observed principally for HIV-2 strains derived from asymptomatic individuals, while HIV-2 strains derived from AIDS patients used CXCR-4. However, there were several exceptions, and the patterns of coreceptor usage seemed more complex for HIV-2 than for HIV-1. The two T-tropic HIV-2 strains tested used CXCR-4 and not CCR-5, while T-tropic HIV-1 can generally use both. Moreover, among five primary HIV-2 strains all unable to use CXCR-4, three could replicate in CCR-5-negative PBMC, which has not been reported for HIV-1. These observations suggest that the CCR-5 coreceptor is less important for HIV-2 than for HIV-1 and indicate that HIV-2 can use other cell entry pathways and probably other coreceptors. One HIV-2 isolate replicating in normal or CCR-5-negative PBMC failed to infect CXCR-4+ cells or the U87MG-CD4 and sMAGI cell lines, which are permissive to infection by HIV-2 but not by HIV-1. This suggests the existence of several HIV-2-specific coreceptors, which are differentially expressed in cell lines and PBMC.