Retroviral vectors have had limited success in mediating gene transfer to hematopoietic stem cells, particularly in primates, due in part to low or absent expression of the amphotropic receptor (RAM-1). We have been interested in determining whether retrovirus pseudotyped with vesicular stomatitis virus G protein (VSV-G) would allow more efficient gene delivery to hematopoietic stem cells as the VSV-G receptors appear to be ubiquitously present phospholipids. However, we previously found that completion of retroviral vector reverse transcription does not occur in CD34+ CD38- hematopoietic stem cells that were exposed to VSV-G pseudotyped retrovirus. To determine at which stage the block to infection of CD34+ CD38- cells occurs, we confirmed by FACS analysis that VSV-G pseudotyped viral particles could bind to CD34+ CD38- cells. Virus binding to CD34+ cells was saturable at 4 degrees C but nonsaturable at 37 degrees C, up to a multiplicity of infection of 1080. This suggests that surface levels of phospholipid receptors available for viral binding are limiting on CD34+ cells. Cytokine stimulation increased virus binding to CD34+ cells. However, no increase in the level of surface phosphatidylserine (PS), a strong candidate for the VSV-G receptor, was seen as detected by the PS-specific reagent, annexin V. This suggests that another molecule is serving as the VSV-G receptor on CD34+ cells. Here, we show that once virus binding to cytokine-stimulated CD34+ CD38- cells has occurred, virus fusion proceeds efficiently as determined by octadecyl rhodamine (R18) fusion assays. Taken together with our previous observation that reverse transcription does not occur in CD34+ CD38- cells, we suggest that there are intracellular mechanisms leading to blockage of complete reverse transcription of the retrovirus in CD34+ CD38- cells. This has important implications for retrovirus-mediated gene transfer to quiescent stem cells.