Atomic structure of a thermostable subdomain of HIV-1 gp41

Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12303-8. doi: 10.1073/pnas.94.23.12303.

Abstract

Infection by HIV-1 involves the fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. The HIV-1 envelope glycoprotein that mediates fusion consists of the surface subunit gp120 and the transmembrane subunit gp41. gp120 directs virion attachment to the cell-surface receptors, and gp41 then promotes viral-cell membrane fusion. A soluble, alpha-helical, trimeric complex within gp41 composed of N-terminal and C-terminal extraviral segments has been proposed to represent the core of the fusion-active conformation of the HIV-1 envelope. A thermostable subdomain denoted N34(L6)C28 can be formed by the N-34 and C-28 peptides connected by a flexible linker in place of the disulfide-bonded loop region. Three-dimensional structure of N34(L6)C28 reveals that three molecules fold into a six-stranded helical bundle. Three N-terminal helices within the bundle form a central, parallel, trimeric coiled coil, whereas three C-terminal helices pack in the reverse direction into three hydrophobic grooves on the surface of the N-terminal trimer. This thermostable subdomain displays the salient features of the core structure of the isolated gp41 subunit and thus provides a possible target for therapeutics designed selectively to block HIV-1 entry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • HIV Envelope Protein gp41 / chemistry*
  • HIV-1 / chemistry*
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Protein Conformation
  • Temperature

Substances

  • HIV Envelope Protein gp41