Background: Subhypnotic doses of propofol possess direct antiemetic properties. The authors sought to determine the plasma concentration of propofol needed to effectively manage postoperative nausea and vomiting.
Methods: Patients aged 18-70 yr who were classified as American Society of Anesthesiologists physical status 1 or 2 and had surgery during general anesthesia were approached for the study. Only patients who had nausea (verbal rating score > 5 on a 0- to 10-point scale), retching, or vomiting in the postanesthetic care unit participated. Propofol was administered to these patients to achieve target plasma concentrations of 100, 200, 400, and 800 ng/ml using a computer-assisted continuous infusion device. Target concentrations were increased every 15 min until patients described at least a 50% reduction in symptoms on the verbal rating score. An arterial blood sample was obtained at each step. The measured plasma propofol concentrations were used to analyze data. Blood pressure, heart and respiratory rates, arterial blood saturation, sedation score, and overall satisfaction with treatment were recorded.
Results: Of the 89 patients who consented to the study, 15 patients met entry criteria and were enrolled. Five of these patients also had retching or vomiting when they entered the study. Fourteen patients responded successfully to treatment. One patient did not achieve the required response at plasma concentrations of 830 ng/ml. Hence the success rate for the treatment of postoperative nausea and vomiting was 93%. Among patients who responded, the median plasma concentration associated with an antiemetic response was 343 ng/ml. There was no difference in sedation scores from baseline and no episodes of desaturation. Hemodynamic parameters were stable during the study.
Conclusions: Propofol is generally efficacious in treating postoperative nausea and vomiting at plasma concentrations that do not produce increased sedation. Simulations indicate that to achieve antiemetic plasma propofol concentrations of 343 ng/ml, a bolus dose of 10 mg followed by an infusion of approximately 10 microg x kg(-1) x min(-1) are necessary.