The genetic defect underlying myotonic dystrophy (DM) has been identified as an unstable CTG trinucleotide repeat amplification in the 3'-untranslated region (3'-UTR) of the DM kinase gene (DMK). Individuals with the most severe congenital form display a marked delay in muscle terminal differentiation. To gain insight into the role of DMK during myogenesis, we have examined the effect of DMK overexpression on the terminal differentiation of the murine myoblast cell line C2C12. We demonstrate that a 4-10-fold constitutive overexpression of DMK mRNA in myoblasts caused a marked inhibition of terminal differentiation. Surprisingly, this activity was mapped to a 239-nucleotide region of the 3'-UTR of the DMK transcript. When the DMK 3'-UTR was placed downstream of a reporter gene, the same inhibition of myogenesis was observed. Following the induction of differentiation of myoblast clones overexpressing the DMK 3'-UTR, the levels of myogenin mRNA were reduced by approximately 4-fold, whereas the steady state levels of mef-2c transcripts were not affected. These data suggest that overexpression of the DMK 3'-UTR may interfere with the expression of musclespecific mRNAs leading to a delay in terminal differentiation.