Poliovirus protein 2C is a 329-amino acid-protein that is essential for viral RNA synthesis and may perform multiple functions. In infected cells, it is associated with virus-specific membrane vesicles. Recombinant 2C protein expressed in transfected cells has been shown to associate with and induce rearrangement of the intracellular membrane network. This study was designed to map the determinants of membrane binding and rearrangement in the 2C protein. Computer-assisted analysis of the protein sequence led to a prediction that the protein folds into a structure composed of three domains. Expression plasmids that encode each or combinations of these predicted domains were used to examine the abilities of the partial protein sequences to associate with intracellular membranes and to induce rearrangement of these membranes in HeLa cells. Biochemical fractionation procedures suggested that the N-terminal region of the protein was required for membrane association. Electron microscopic and immunoelectron microscopic observation showed that both the N- and C-terminal regions, but not the central portion, of 2C protein interact with intracellular membranes and induce major changes in their morphology. The central portion, when fused to the N-terminal region, altered the specific membrane architecture induced by the N-terminal region, giving rise to vesicles resembling those observed during poliovirus infection.