15-Lipoxygenase has been implicated in the in vivo oxidation of low density lipoprotein (LDL) a process thought to be important in the origin and/or progression of human atherogenesis. We have suggested previously that oxidation of LDL's cholesteryl esters (CE) and phospholipids by soybean (SLO) or human recombinant 15-lipoxygenase (rhLO) can be ascribed largely to alpha-tocopherol (alpha-TOH)-mediated peroxidation (TMP). In this study we demonstrate that addition to LDL of unesterified linoleate (18:2), other free fatty acid (FFA) substrates, or phospholipase A2 (PLA2) significantly enhanced the accumulation of CE hydro(pero)xides (CE-O(O)H) induced by rhLO, whereas the corresponding CE and nonsubstrate FFA were without effect. The enhanced CE-O(O)H accumulation showed a dependence on the concentration of free 18:2 in LDL. In contrast, addition of 18:2 had little effect on LDL oxidation induced by aqueous peroxyl radicals or Cu2+ ions. Analyses of the regio- and stereoisomers of oxidized 18:2 in SLO-treated native LDL demonstrated that the small amounts of 18:2 associated with the lipoprotein were oxidized enzymically and within minutes, whereas cholesteryl linoleate (Ch18:2) was oxidized nonenzymically and continuously over hours. alpha-Tocopheroxyl radical (alpha-TO.) formed in LDL exposed to SLO was enhanced by addition of 18:2 or PLA2. With rhLO and 18:2-supplemented LDL, oxidation of 18:2 was entirely enzymic, whereas that of Ch18:2 was largely, though not completely, nonenzymic. The small extent of enzymic Ch18:2 oxidation increased with increasing enzyme to LDL ratios. Ascorbate and the reduced form of coenzyme Q, ubiquinol-10, which are both capable of reducing alpha-TO. and thereby preventing TMP, inhibited nonenzymic Ch18:2 oxidation induced by rhLO. Trolox and ascorbyl palmitate, which also inhibit TMP, ameliorated both enzymic and nonenzymic oxidation of LDL's lipids, whereas probucol, a radical scavenger not capable of preventing TMP, was ineffective. These results demonstrate that rhLO-induced oxidation of CE is largely nonenzymic and increases with LDL's content of FFA substrates. We propose that conditions which increase LDL's FFA content, such as the presence of lipases, increase 15-LO-induced LDL lipid peroxidation and that this process requires only an initial, transient enzymic activity.