Mitochondrial physiology is disrupted in either apoptosis or necrosis. Here, we report that a wide variety of apoptotic and necrotic stimuli induce progressive mitochondrial swelling and outer mitochondrial membrane rupture. Discontinuity of the outer mitochondrial membrane results in cytochrome c redistribution from the intermembrane space to the cytosol followed by subsequent inner mitochondrial membrane depolarization. The mitochondrial membrane protein Bcl-xL can inhibit these changes in cells treated with apoptotic stimuli. In addition, Bcl-xL-expressing cells adapt to growth factor withdrawal or staurosporine treatment by maintaining a decreased mitochondrial membrane potential. Bcl-xL expression also prevents mitochondrial swelling in response to agents that inhibit oxidative phosphorylation. These data suggest that Bcl-xL promotes cell survival by regulating the electrical and osmotic homeostasis of mitochondria.