The valAB locus of Francisella novicida has previously been found to be highly similar at the deduced amino acid level to msbA lpxK of Escherichia coli. Both ValA and MsbA are members of the superfamily of ABC transporters, and they appear to have similar functions. In this study we describe the isolation of a temperature-sensitive valAB locus. DNA sequence analysis indicates that the only changes to the ValAB deduced amino acid sequence are changes of S453 to an F and T458 to an I in ValA. E. coli strains defective in msbA and expressing temperature-sensitive ValA rapidly ceased growth when shifted from a permissive temperature to a restrictive temperature. After 1 h at the restrictive temperature, cells were much more sensitive to deoxycholate treatment. To test the hypothesis that ValA is responsible for the transport or assembly of lipopolysaccharide, we introduced gseA, a Kdo (3-deoxy-D-manno-octulosonic acid) transferase from Chlamydia trachomatis, into a strain with a temperature-sensitive valA allele and a nonfunctional msbA locus. These recombinants were defective in cell surface expression of the chlamydial genus-specific epitope within 15 min of a shift to the nonpermissive temperature. Also, there was enhanced association of the epitope with the inner membrane after a shift to the nonpermissive temperature. Thus, we propose that ValA is involved in the transport of lipopolysaccharide to the outer membrane.