Macrophages (M phi) are important for angiogenesis during inflammation, wound repair, and tumor growth. However, well-characterized M phi subsets such as IFN-gamma-induced, classically activated (ca) M phi or IL-4/glucocorticoid-induced, alternatively activated (aa) M phi have not been thoroughly examined for a positive or negative association with angiogenesis. While caM phi populate early inflammatory reactions and high-turnover granulomas, aaM phi occur in healing wounds and chronic inflammation. In contrast to caM phi-dominated lesions, aaM phi-rich lesions are highly vascularized. In order to determine their angiogenic potential in vitro, these M phi subsets as well as unstimulated control macrophages (coM phi) were analyzed by RT-PCR for mRNA expression of 10 angiogenic factors after 3 and 6 days of culture. Early during activation, caM phi and coM phi expressed equal levels of 8 of 10 angiogenic factors (PDGF-A, MK, TNF-alpha, TGF-beta 1, PDGF-B, HGF, TGF-alpha, IGF-1), while aaM phi showed expression of only 4 of these factors (TGF-beta 1, PDGF-B, HGF, GF-1). After maturation, TGF-alpha and IGF-1 showed a shift in mRNA expression from caM phi to aaM phi resulting in a considerably enhanced expression of these factors in day-6 aaM phi as compared to day-6 caM phi and coM phi while PDGF-A, MK, and TNF-alpha remained suppressed in day 6 aaM phi. In all M phi subsets including controls, mRNA expression of aFGF and bFGF was minimal or absent while TGFG-beta 1, HGF, and ODGF-B were constitutively expressed. In order to functionally integrate angiogenic factor mRNA expression profiles, mitogenic activity of M phi subsets towards microvascular endothelium was assessed by cocultivation. Coculture experiments revealed that endothelial proliferation induced by aaM phi was 3.0-3.5x higher than induced by caM phi. In conclusion, mature aaM phi are well equipped to play an important role in protracted M phi-associated angiogenic processes. Presumably due to expression of predominantly angio-inhibitory cytokines such as TNF-alpha by caM phi but much less by aaM phi, caM phi exhibit only a low angiogenic potential in vitro and in vivo despite considerable expression of angiogenic factor mRNA.