An endogenous wheat (Triticum aestivum) flour endoxylanase was purified to homogeneity from a crude wheat flour extract by ammonium sulfate precipitation and cation-exchange chromatography. The 30-kD protein had an isoelectric point of 9.3 or higher. A sequence of 19 amino acids at the NH2 terminus showed 84.2% identity with an internal sequence of 15-kD grain-softness protein, friabilin. High-performance anion-exchange chromatography and gel-permeation analysis of the hydrolysis products indicated the preferential hydrolysis of highly branched structures by the enzyme; wheat arabinoxylan and rye (Secale cereale) arabinoxylan (high arabinose to xylose ratios) were hydrolyzed more efficiently by this enzyme than oat (Avena sativa) spelt xylan (low arabinose to xylose ratios). The release of the hydrolysis products as a function of time suggested that the endoxylanolytic activity was associated with the release of arabinose units from the polysaccharides, suggesting that the enzyme action is similar to that by endoxylanases from Ceratocystis paradoxa, Aspergillus niger, and Neurospora crassa. Although the enzyme released arabinose from arabinoxylan, it did not hydrolyze p-nitrophenyl-alpha-L-arabinofuranoside. From the above, it follows that the enzyme, called arabinoxylanase, differs from most microbial endoxylanases and from an endoxylanase purified earlier from wheat flour.