Limitations of dual-photopeak window scatter correction for brain imaging

J Nucl Med. 1997 Dec;38(12):1902-6.

Abstract

A method for performing scatter corrections that would directly use the photopeak information and would be straightforward for use in clinical practice would be attractive in SPECT imaging. The dual-photopeak window method may be such a method. It relates the scatter fraction to the ratio of the lower to the total parts of a split-photopeak window. We investigated the use of this scatter correction method on a dedicated brain camera.

Methods: Calibration curves for the Ceraspect, a dedicated brain imaging camera, were obtained for four split-window combinations using point sources in air and water. Simulations of the Ceraspect calibration curves at several energy resolution values were obtained using a Monte Carlo simulation of the instrument.

Results: The calibration curves, experimental and simulated, revealed an ambiguous and unstable relationship between lower-to-total ratio and scatter fraction.

Conclusion: The unsatisfactory calibration curves can be attributed to the limited scatter produced in a brain-sized phantom during the calibration process and inherent stability problems in the calibration process. The dual-photopeak window method is not usable for small-field imaging systems and may even be unstable for larger-field systems.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Brain / diagnostic imaging*
  • Calibration
  • Computer Simulation
  • Gamma Cameras
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Monte Carlo Method
  • Phantoms, Imaging
  • Scattering, Radiation
  • Tomography, Emission-Computed, Single-Photon / instrumentation
  • Tomography, Emission-Computed, Single-Photon / methods*