Analogs of bombesin in which the peptide bond between the two last amino acid residues were replaced by a pseudopeptide bond mimicking the transition state analog were evaluated. These compounds were able to recognize the bombesin receptor on isolated rat pancreatic acini with high potency (Ki from 0.60 +/- 0.27 nM to 4.3 +/- 2.3 nM). Although they were devoid of agonist activity, they were able to antagonize bombesin-induced amylase secretion in this model, with potencies in accordance with their affinities (IC50 from 1.6 +/- 0.3 nM to 10.0 +/- 1.7 nM). When tested in vivo in the anesthetized rat, these bombesin receptor antagonists exhibited high potency in inhibiting bombesin-induced pancreatic secretion (H-DPhe-Gln-Trp-Ala-Val-Gly-His-NH-CH[CH2-CH(CH3)2]-CHOH-(CH 2)3-CH3, JMV845, was among the most potent compounds with ED50 of 7.82 +/- 2.89 nM in inhibiting bombesin-induced protein secretion). The results of this study showed that replacing the peptide bond between the two last amino acid residues in bombesin by mimicking the transition state analog resulted in in vitro and in vivo potent bombesin receptor antagonists.