The integrases of retrotransposons (class I) and retroviruses and the transposases of bacterial type elements (class II) were compared. The DDE signature that is crucial for the integration of these elements is present in most of them, except for the non-LTR retrotransposons and members of the hAT and P super-families. Alignment of this region was used to infer the relationships between class II elements, retrotransposons, and retroviruses. The mariner-Tc1 and the Pogo-Fot1 super-families were found to be closely related and probably monophyletic, as were LTR retrotransposons and retroviruses. The IS elements of bacteria were clustered in several families, some of them being closely related to the transposase of the mariner-Tc1 super-family or to the LTR retrotransposon and retrovirus integrases. These results plus that of Xiong and Eickbush (1990) were used to develop an evolutionary history suggesting a common ancestral origin(s) for the integrases and transposases containing the DDE signature. The position of the telomeric elements (Het-A and TART) was assessed by comparing their gag and reverse transcriptase domains (when present) to those of group II introns and non-LTR retrotransposons. This preliminary analysis suggests that telomeric elements may be derived from non-LTR retrotransposons.