Redistribution of receptors within the plasma membrane as well as between the plasma membrane and various cell compartments presents an important way of regulating the cellular responsiveness to their cognate agonists. We have applied immunocytochemical methods to localize the bradykinin B2 receptor and to examine its agonist induced redistribution in A431 cells. In situ labeling with antibodies to ectodomain-2 of the receptor which do not interfere with bradykinin binding of the receptor showed a random distribution of the B2 receptor on the plasma membrane. Stimulation of cells with 20 nM bradykinin markedly reduced the accessibility of the antibody to its corresponding epitope in non-permeabilized cells. Immuno-electron microscopy revealed the presence of receptors in membrane-near vesicles that are surrounded by an electron-transparent halo. Fluorescence microscopic double labeling co-localized the B2 receptor protein with caveolin-1 by a convergent pattern of punctate staining. At the ultrastructural level the B2 receptor protein was found in vesicles that bear the immunolabel of caveolin-1 and display the morphological characteristics of caveolae. We conclude that stimulation of B2 receptors results in their redistribution and sequestration in caveolae, an event that is likely to be implicated in receptor signaling and/or desensitization. The localization of B2 receptors in endosome-like structures after prolonged exposure to bradykinin might indicate that the internalization through caveolae may communicate with other endocytotic pathways of A431 cells.