The regulators of G-protein signaling (RGS) family members contain a conserved region, the RGS domain, and are GTPase-activating proteins for many members of G-protein alpha-subunits. We report here that the core domain of RGS16 is sufficient for in vitro biochemical functions as assayed by its G-protein binding affinity and its ability to stimulate GTP hydrolysis by G alpha(o) protein. RGS16 also requires, in addition to the RGS domain, the divergent N-terminus for its biological function in the attenuation of pheromone signaling in yeast, whereas its C-terminus region is dispensable. Together with other evidence, these data support the notion that RGS proteins interact with other cellular factors and may serve to link specific G-proteins to different downstream effectors in G-protein-mediated signaling pathways.